Чем на самом деле занимаются аналитики данных и почему они не останутся без работы — Лайфхакер

Зачем нужна аналитика? На что обратить внимание при поиске первой работы и как подготовиться к собеседованию? Сменить профессию бывает непросто, но в нашей статье мы постарались развеять все ваши…

Сначала я считал себя «чистым гуманитарием»

Решение стать аналитиком данных пришло ко мне не сразу. Сначала я вообще, как ни странно, считал себя «чистым гуманитарием». Я сдавал ЕГЭ по истории и обществознанию и думал, что буду юристом или историком. Но в итоге я поступил на техническую специальность, заинтересовался программированием — и даже успешно проучился один семестр в образовательном центре VK в МГТУ им. Н.Э. Баумана в университете на Web-разработчика. 

Когда я понял, что не хочу быть программистом, было довольно сложно принять решение не продолжать обучение, потому что я привык все доводить до конца. Кроме того, уходить в неизвестность всегда страшно и трудно. 

Но однажды я просто задал себе вопрос: «А какой во всем этом смысл? Зачем мне быть пусть даже высококвалифицированным программистом, если эта работа мне не нравится?».

Ведь если тебе что-то не нравится, ты не будешь получать от этого удовольствие, а в работе это тоже очень важно.

Аналитикой данных я заинтересовался почти случайно. На каникулах после первого семестра я рассматривал разные варианты — думал, чем же в итоге хочу заниматься. Я участвовал в разговорных играх на английском языке и там познакомился с девушкой из Лондона, которая работала аналитиком данных. Меня заинтересовали ее рассказы, я немного погрузился в тему — и понял, что это нравится мне гораздо больше, чем программирование. 

Невозможно попробовать все, но можно пробовать.

Для меня обучение аналитике данных было второй попыткой найти свою профессию, и она оказалась удачной — мне кажется, сейчас я на своем месте.

Какое-то время я самостоятельно изучал новую специальность, а потом пошел на курсы — мои ожидания от профессии во время обучения совпали с реальностью. 

Как я выбирал направление

Я искал область, где можно начать с нуля в 30 лет и где даже на старте доход будет от 80 000—100 000 Р на руки. Выбирал между веб-разработкой, гейм-разработкой и анализом данных. Читал о них на «Хабре» и смотрел требования и зарплаты в вакансиях в интернете.

Почему я отмел разработку. Если коротко, то веб- и гейм-разработка — это создание сайтов, приложений и игр. Для них нужны разные языки программирования, а я их не изучал. Плюс я прочитал, что требования работодателей постоянно меняются. Например, для веб-разработки можно долго изучать одну библиотеку JavaScript, а через полгода в вакансиях потребуется другая. Или вообще какой-нибудь другой язык, например Go вместо JavaScript.

Еще в гейм-разработке меня смутило то, что в вакансиях много требований даже для новичков. И без профильного высшего образования эти знания получить трудно.

Это требования в вакансии гейм-разработчика. Как минимум нужно отличное знание и владение C#, а я с ним никогда не имел дело

Что такое аналитика. Аналитики исследуют разные данные, фильтруют их и прогнозируют. А компании смотрят на этот анализ и решают, как им дальше развиваться и какие новые продукты создавать.

Меня интересовали два направления аналитики — дата-сайенс и бизнес-аналитика, то есть BI. Дата-аналитики работают с данными, которые помогают развивать бизнес компании. Например, анализируют транзакции клиентов в банке. Потом банк формирует для этих клиентов заманчивые предложения.

Бизнес-аналитики анализируют структуру организации и ее внутреннюю деятельность. Советуют, что улучшить, чтобы компания развивалась, и разрабатывают программы, которые ускоряют бизнес-процессы.

Почему я выбрал дата-аналитику. О дата-аналитике мне подробно рассказал друг: он как раз заканчивал магистратуру по дата-сайенс в Высшей школе экономики. Он сказал, что это перспективное направление и аналитики востребованы во всем мире. Из его рассказа я понял, что дата-аналитика — это сложно, но интересно: нужно много копаться в данных, чтобы точно отвечать на запросы компании. А потом искать самые простые и изящные решения задач.

Чтобы заняться аналитикой с нуля, нужно хорошо разбираться в математике и статистике. А я забыл их со времен университета. Зато из языков программирования нужны были только Python и SQL. Я стал читать о них, нашел примеры кода — языки показались мне простыми и доступными. К тому же в интернете по ним было много курсов и обучающих сайтов. В общем, я выбрал дата-аналитику и решил подтянуть математику и статистику.

Меня расстраивал только доход: в некоторых вакансиях предлагали всего 40 000—60 000 Р. А на одну позицию искали стажера-аналитика Python и вовсе на 25 000 Р. Но я понимал, что если сменю специальность, то поначалу придется просесть в деньгах. Зато перспективы роста у меня будут лучше, чем в продажах.

Меня успокоило, что опытные Python-разработчики могут рассчитывать на более высокий доход

Зачем нужна аналитика?

Цель любого бизнеса — это извлечение прибыли. Прибыль — это выручка минус издержки. Прибыль должна быть максимизирована в долгосрочной перспективе. Как же здесь помогает аналитика?

Есть три больших направления, в которых аналитика добавляет ценности:

1. Формирование бизнес-процессов.

Куда бизнес движется, в правильном ли направлении, как чувствуют себя ключевые сегменты клиентов и бизнеса? Обладая этими данными, аналитик может подсказать решение тех или иных проблем. Допустим, в бизнесе что-то идёт не так, и, в условиях быстро ускоряющегося мира, время — это реально самый ценный ресурс. Необходимо решать проблемы и выводить на рынок новые гипотезы быстрее конкурентов, и здесь-то вам поможет аналитика.

2. Принятие взвешенных решений на основе данных.

Здесь уже не только про алертинг, но и про формирование ключевых решений. Ведение любого бизнеса сопровождается неопределенностью и всю полноту информации получить никак нельзя. Если бы информация была всегда полной, доступной и равномерно распределенной между участниками рынка, то аналитика как таковая была бы не нужна. Но и сверхприбыли у бизнеса тоже бы не было. Если у вас есть релевантные данные для принятия решения и понимание, как из них извлечь информацию, то автоматически вы выигрываете у тех, у кого данных и этого понимания нет. Конечно, в бизнесе нельзя всегда принимать правильные решения, но, например, с помощью data-driven подхода можно минимизировать долю неверных решений. Разумеется, для этого вам нужны спецы, которые могут для вас эти данные проанализировать, чтобы они были полные и консистентные, то есть согласованные. Тогда в долгосрочной перспективе из этого можно извлекать пользу.

3. Новые идеи для бизнеса, для развития и экспериментов.

В своей основе это прежде всего какая-то идея, и она может либо зайти на рынок, либо нет. Чем больше релевантных идей и чем больше экспериментов генерируется, тем больше прибыли вы можете в перспективе получить. Прелесть IT-продуктов в том, что исследуя паттерны поведения внутри сервиса, можно понимать инсайты, которые казалось бы изначально неочевидные, но которые говорят о том, как пользователю будет лучше за счет аналитики и данных. Кроме того, в этом же направлении лежат и накопление данных о том, что вы просматривали, чтобы сгенерировать для вас более релевантный контент. Например, это делает YouTube, Netflix, ВКонтакте и др. компании, где очень широко развита рекомендательная система.

Ключевой вопрос для любого анализа, во время и после него:

so what?

Что от этого всего бизнесу? Вы каким-то образом улучшаете понимание того, что происходит в бизнесе на данный момент? Вы генерируете больше идей и экспериментов за счет анализа? Вы принимаете более правильные и свежие решения?

Если хотя бы один ответ на три этих вопроса «да», то значит аналитик не зря делает свою работу. Аналитика — это не просто цифры и числа, это мощный инструмент, который позволяет вести качественный бизнес. Компании, понимающие это, готовы серьёзно вкладываться в аналитику, ибо знают, что несмотря на затратность процесса, от этого можно получить гораздо больше.

Кто такие аналитики и что они должны уметь

Все аналитики работают с данными, но у каждого есть специализация. Data Engineer, ML Engineer, ML Researcher, Data Implementator, Data Visualisator, Product Analyst, Marketing Analyst, Customer Experience Analyst, Chief Data Officer — направлений в аналитике очень много.

Конечно, универсальные аналитики тоже встречаются — это data-аналитики. Data-аналитик умеет всё. И если компания молодая или только начинает заниматься аналитикой, она будет нанимать именно data-аналитиков — ребят, которые знают, что такое данные, как с ними работать, как загружать откуда угодно, как их трансформировать.

Например, три года назад в Skyeng не было градации, все были data-аналитиками. И такой же путь проходят многие организации.

Но в крупных компаниях обычно работают три вида узкоспециализированных аналитиков.

BI-аналитик. Это человек, который анализирует уже имеющуюся бизнес-модель. Смотрит, не сломалось ли в ней что-то, правильно ли работают все элементы, выполняет ли каждый филиал свои задачи. Словом, на этой позиции нужно анализировать готовое и рисовать очень много дашбордов.

Adv.Cake_Logo.png

Спецпроект

Продуктовый аналитик. Тот, кто помогает компании и продукту поменяться. Когда мы запускаем продукт, мы должны давать потребителю то, что решит его проблему. Аналитику тут нужно находить пользовательские данные, работать с логами, с большим количеством экспериментов. И в продуктовом анализе вообще никак без статистики.

Маркетинговый аналитик. Он работает с веб-аналитикой или аналитикой приложений в зависимости от типа бизнеса, прогнозирует эффективность маркетинговых кампаний, планирует целевые показатели и KPI.

Маркетинговый аналитик разбирает воронку продаж, чтобы понять, как работают каналы и атрибуция. Он определяет, какими каналами лучше пользоваться. Например, решает, что надо сначала прогревать пользователей через YouTube, а потом показывать таргетированную рекламу в Фейсбуке. Или наоборот.

Что такое большие данные

На уроках математики в школе вы постоянно работали с данными: складывали, умножали, делили в уме или в столбик. Возможно, вы также ведёте семейный бюджет в блокноте или в таблице — вносите информацию и используете простые формулы: находите суммы, разности, средние значения. То есть выполняете обработку данных, причём преимущественно вручную. Когда их мало, справляться с такими задачами сравнительно несложно.

Большие данные — это когда информации действительно много: чёткой границы нет, но обычно речь идёт о гигабайтах, если не о терабайтах. Эти массивы могут поступать сразу из множества источников: интернет‑магазинов и социальных сетей, промышленных систем управления качеством, систем видеонаблюдения, устройств интернета вещей.

Данные отличаются по структуре, бывают упорядоченными и нет. Например, история операций по кредитке упорядочена по времени, а характеристики смартфонов на складе можно хранить без строгого порядка.

Плотность данных также может быть разной: одни системы выполняют измерения каждый час, другие — несколько раз в секунду. Соответственно, и объёмы информации отличаются: от нескольких килобайт до сотен гигабайт.

Работать с большими данными вручную сложно: это долго, дорого и неэффективно. Поэтому для анализа таких массивов используют средства автоматической обработки.

На что важно обратить внимание при поиске первой работы?

Если вы для себя решили, что аналитика — это то, что вам нужно, то при поиске первой работы вам необходимо найти место, где вы сможете лучше всего прокачаться. Под прокачкой имеются ввиду не только хард скиллы и использование инструментов, но и то, как подходить к проблемам, как и какие данные использовать.

На что стоит обратить внимание при поиске первой работы?

Пункты пойдут по убыванию важности, от наиболее важным к наименее:

1. Самое главное — это команда и руководитель.

Это те люди, у которых вы будете ближайшие полгода, год или два учиться. Перед тем, как зайти на борт, спросите себя: хотите ли вы у них черпать знания, вдохновляют ли они вас, круты ли они в том, чем занимаются?

Постарайтесь про них выяснить как можно больше: посмотрите в интернете их выступления, ведут ли они какие-то блоги или каналы, может быть, они пишут тексты в профильных сообществах. Если хотя бы один человек в команде что-то из этого делает, то это хороший знак.

На интервью подробно расспросите, что ожидается от джуна, какой в компании формат взаимодействия в коллективе. Помните, что ваша основная цель — это прокачаться и уйти оттуда с полным знаний и опыта багажом.

2. Сама компания.

Это не про офис и условия труда — это, конечно, неплохо, но это не долгосрочная мотивация. Это про посыл, которая сама компания транслирует.

Качественный личностный рост может быть только вместе с мотивацией. Если мотивации нет, то нельзя классно прокачаться. Если ваш вайб резонирует с вайбом компании, то только тогда вы сможете эффективно усовершенствовать свои навыки. Лучше сразу найти себе какое-то место по душе. Аналитика сейчас нужна везде: в e-commerce, classified, foodtech, gametech, HR, медиа, логистика и т.д. Реально везде есть данные и с ними нужно работать, чтобы эффективно управлять бизнесом.

3. Стэк технологий, которые компания использует.

Как джун вы можете в них не разбираться, от вас это по большому счету никто и не ждёт, но если ребята пользуются Excel и у них база одна MySQL, то вам стоит насторожиться. Да, Excel — это супер мощный инструмент, но если у компании классный cтэк по работе с данными, то это значит, что она понимает их важность и готова в них вкладываться. И, скорее всего, у бизнеса есть классная команда, а это значит, что вы можете круче прокачаться.

Бывает сложно разобраться с тем, что происходит

Чем занимается аналитик данных? Он описывает реальность какими-то моделями и пытается вывести из того, что он имеет, интересную и полезную информацию. Крутость таких специалистов заключается в том, что обычно в распоряжении аналитика находятся огромные базы данных — куча строк с какими-то непонятными сведениями, из которых он умудряется извлечь пользу для бизнеса, предоставить компании готовое решение, полезную информацию, которой раньше у нее не было.

Если программисты — это конструкторы, создающие код, благодаря которому что-то работает, то аналитики данных — это исследователи.

Но не все так просто. В программировании, чтобы что-то заработало, нужно, чтобы оно сначала раз 15 упало. А потом упало еще 15 раз после всех доработок. В итоге с 31-й попытки что-то получится — и то, скорее всего, не то, что планировалось. В аналитике данных тоже есть свои тонкости в этом плане.

Став аналитиком, ты думаешь, что будешь узнавать о мире правду, будешь говорить: «Бизнес, сделай вот так — это принесет тебе 5 млн долларов!». Но в реальности очень много времени приходится тратить на то, чтобы подготовить данные к использованию, потому что они не идеальны, учесть все моменты, заполнить пропуски. И это та самая рутина, от которой устаешь. 

Кроме того, иногда бывает сложно разобраться с тем, что происходит. У тебя есть какие-то данные, тебе нужно их как-то обработать, очистить. Потом ты что-то считаешь — и понимаешь, что результат вообще никак не связан с реальностью и что-то происходит не так. Тебе надо с этим разобраться — надо понять, что ты сделал не так, где ошибся, где в этой логической цепочке принял неправильное решение, из-за которого все пошло не так, как хотелось бы.

Три необходимых скилла аналитика

Работу аналитиков можно разделить на три части.

Первая касается данных и надёжности. Всегда нужно обогащать данные! Если вы анализируете кандидатов, то с помощью api можно посмотреть во ВКонтакте, какую музыку они любят. Пригодиться может что угодно. Если вы работаете с данными, и думаете, что нашли всё, просто знайте — нет, не всё.

Данных всегда больше, чем кажется. Дополнительные данные могут быть где-то рядом. Поэтому на курсах Skypro мы всегда учим искать больше и находить то, что нужно для решения задачи, а не работать с тем, что есть.

Вторая часть — метрики. Хорошие метрики — это чувствительные метрики. Если в продукте что-то поменяется, аналитик сразу должен увидеть это по изменениям показателей. Метрика должна быть чувствительной, а в идеальном варианте метрики должны ещё и выстраиваться в иерархию или слои пирамиды метрик.

Третья часть — это репортинг, то есть доставка метрик до конечного потребителя. Должна быть явная, понятная система алертов, система дашбордов. Чтобы любой человек мог зайти и понять, что с его продуктом происходит, чтобы данные приходили вовремя (не часто, а именно вовремя), чтобы они всегда были актуальными и легко-интерпретируемыми.

Что вы можете предложить при поиске первой работы аналитиком?

1. Знание SQL.

Если вы не сможете достать нужные данные, то вы не сможете сделать анализ. Достать данные вы можете с помощью SQL. У Юрия Тростина была куча реджектов из-за того, что он не знал SQL. Потом, конечно, ему пришлось его выучить.

SQL бывает разный:

  • Стандартный SQL, который сформировался в 80-е годы. Именно его надо учить изначально. Стандартный SQL Юрий учил с помощью сайта sql-ex.ru. Это сборник задач по SQL, где есть различные виды баз данных и там можно попробовать поотвечать на аналитические вопросы.
  • В российской IT-индустрии популярен другой диалект SQL, с которым работает ClickHouse. ClickHouse — это колоночная аналитическая СУБД с открытым кодом, позволяющая выполнять аналитические запросы в режиме реального времени на структурированных больших данных, разрабатываемая компанией Яндекс.

ClickHouse сейчас используют повсеместно все, например, Mail.ru Group, Авито, Яндекс. Его синтаксис не сильно отличается от основного, хотя, конечно же, есть различия, которые делают его более функциональным в работе с ClickHouse. Его задачи заточены именно на анализ, на лиды, а не только на извлечение данных.

2. Python.

Это стандарт индустрии для анализа данных, data science, в нем также можно сразу создавать визуализации. Владение Python позволяет вам проводить определенные операции гораздо быстрее, если вы используете его в связке с SQL, в отличие от того момента, когда у вас есть просто SQL. Знание Python будет супер плюсом для потенциального джуна.

Юрий Тростин отмечает, что Python давался ему куда проще, чем SQL. Он очень много зависал на kaggle.com, делал там competitions. Также там есть очень много различных скриптов по анализу, чистке, визуализации данных в Python. Второй момент — это курсы. Например, тот же курс от ProductStar.

3. Системы визуализации данных / BI-системы.

Без визуализации данных ваш анализ не имеет никакого смысла. С помощью BI-системы вы сможете проанализировать данные, визуализировать их, собрать графики в единый дашборд, который будет давать больше представления о том, что происходит в бизнесе, а также из этих данных можно на лету генерить инсайты. Такие продукты, как Tableau, Power BI, QlikView, это все относится к BI-функционалу. Они похожи между собой, поэтому если ознакомиться с каким-то одним из этих продуктов, то вам не будет составлять труда пересесть на что-то другое впоследствии.

4. Специфические продукты, используемые в аналитике.

Не секрет, что есть маркетинговая аналитика, бизнес-аналитика, продуктовая аналитика. В некоторых местах есть стратегическая аналитика, есть аналитика колл-центров, линий поддержки и т.д.

Узкие инструменты для маркетинговой аналитики — это Google Analytics и Яндекс.Метрика. Для продуктовой аналитики — Amplitude, который нужен для анализа пользовательского поведения в приложениях.

5. Эконометрика, A/B-тестирование, Data science.

На джуниорском уровне это не так важно, но в дальнейшем знание таких инструментов вам точно понадобится, если вы хотите преуспеть в аналитике.

Не нужно переходить к инструментам ниже по списку, если вы сначала не выучили инструменты выше. Если вы еще не знаете SQL, то не стоит начинать учить Python и т.п.

Личные качества специалиста

Навыки можно приобрести на обучающих курсах для будущих аналитиков и в процессе работы, а вот личные качества наработать бывает гораздо сложнее.

В работе вам поможет:

  • внимательность;
  • аккуратность;
  • усидчивость, терпение;
  • ответственность;
  • хорошая память;
  • самостоятельность;
  • умение не засыпать над рутинными процессами и даже немножко вдохновляться магией чисел;
  • математический склад ума, стремление к точному цифровому выражению задач;
  • инициативность;
  • умение работать в быстром темпе;
  • многозадачность.

Основной материал, с которым работают аналитики, – это, конечно же, числа, но в процессе работы часто нужно взаимодействовать с другими сотрудниками и клиентами предприятия. Поэтому зайти в личный кабинет в 9 утра, закрыться на замок и выйти в 6 вечера, скорее всего, не получится. Точно не будет лишним умение общаться, договариваться и получать нужные данные от коллег.

Какого аналитика ищут работодатели

Владеть инструментами — это не просто написать их названия в резюме. Главное в аналитике — уметь их применять. Если вы просто знаете, что есть такая штука как Python или SQL и понимаете, как оно работает, то это ещё не всё. Аналитиком вас делает умение превращать данные в действия и отвечать на вопросы. Я часто провожу собеседования и могу сказать, что это самая большая беда — начинающие аналитики не могут ответить на вопросы бизнеса.

Даже аналитик без опыта должен обладать широким кругозором и знать, как можно использовать все теоретические инструменты в работе.

Если он понимает, как работают данные — он знает, что можно сделать и как, а чего делать не стоит.

Поэтому аналитик должен понимать суть, а не просто заучивать методы. Аналитики пишут много кода, и если вы понимаете, как он работает, вы легко можете найти в нём ошибку, оптимизировать его, понять, что здесь делал другой человек. Работа аналитиком — это про 8 часов поиска ошибки в скрипте. Вы не сможете сделать это без полного понимания того, что видите. Готовность добраться до смысла важна для любого аналитика.

Начав работать, ты продолжишь учиться и столкнешься с кучей всего неизвестного

Любая учеба и работа — это не одно и то же и не может быть таким в большинстве случаев. Потому что работа — это что-то конкретное, решение реальных задач из жизни, а учеба — это разбор каких-то основных подходов, которые чаще всего встречаются в работе, даже если упор сделан на практику, как в курсах VK. 

Поэтому надо просто принять тот факт, что, начав работать, ты продолжишь учиться и столкнешься с кучей всего неизвестного. 

Сейчас я работаю в команде продуктовой аналитики Delivery Club. И для меня из прикладных вещей новым было, например, проведение A/B-тестов. А все остальные неожиданности связаны со спецификой компании. У нас каждый аналитик закреплен за конкретным направлением, и я как продуктовый аналитик отвечаю за такую часть бизнеса как customer experience, то есть за все, что происходит после того, как пользователь нажал на кнопку «Заказать». 

Если, например, ему не привезут еду и он позвонит в службу поддержки, то моя зона ответственности — сделать так, чтобы ему, например, дали какой-то справедливый промокод.

Фото: Unsplash

Нашли опечатку? Выделите текст и нажмите Ctrl + Enter

Сколько зарабатывают аналитики

Хорошие аналитики ценятся руководителями, ведь они напрямую влияют на деятельность компании. Зарплаты опытных специалистов разных сфер могут достигать 200–300 тыс. руб.

Примеры вакансий в Москве

Начинающий аналитик может зарабатывать от 20 до 60 тыс. руб.

Вакансии для специалистов без опыта

Исследование специалистов Яндекса показало, что в IT-сфере на 25 % чаще встречаются вакансии для специалистов без опыта. Владельцы таких компаний понимают, что лучше всего обучить сотрудника под потребности своего бизнеса и вырастить из джуниора настоящего профессионала, который будет решать актуальные задачи бизнеса.

С какими сложностями сталкиваются студенты на курсе по анализу данных

Аналитик данных — не самая простая профессия. Чтобы стать хорошим специалистам, придётся приложить немало усилий. К чему стоит быть готовым?

  • Придётся регулярно выделять время на учёбу. Освоить весь материал в сжатые сроки физически невозможно: здесь надо много читать, запоминать, создавать предсказательные модели, писать код, проводить эксперименты и улучшать их результаты.
  • Вы будете постоянно задавать вопросы, и, чтобы получить нужный ответ и не тратить время впустую, необходимо научиться правильно их формулировать.
  • Часть информации предстоит искать самостоятельно. Конечно, в интернете есть всё, а ИТ‑сообщество достаточно отзывчиво, но с нестандартными запросами придётся повозиться.
  • Порой эксперименты с данными завершаются неудачей: ваша модель не подходит для решения задачи, вы получаете совсем не те результаты, которые ожидали. Это нормально: даже опытные аналитики не всегда достигают цели с первого раза. И это вовсе не повод останавливаться.
  • Некоторые темы покажутся совершенно непонятными. Вы можете читать материал снова и снова, но не приблизитесь к сути вопроса. В таких ситуациях помогает переключиться, а позднее вернуться к занятиям — либо попросить помощи у ментора или у других студентов.

Что делать джуну на первой работе?

Главное в первой работе — это максимальная прокачка.

1. Как можно больше общайтесь с командой.

При решении каких-либо задач всегда советуйтесь со своими коллегами, таким образом вы будете впитывать их опыт и делать более качественную работу.

2. Постарайтесь понять, как именно работает бизнес.

Задавайтесь вопросами:

  • Что продает ваша компания?
  • Какова экономика одной продажи?
  • Какова модель монетизации?
  • Что получает пользователь, когда пользуется продуктом вашей компании?

Это поможет сформировать вам цельную картину бизнеса, которая в то же время поможет вам при анализе данных и выдвижении гипотез.

3. Общайтесь не только со своей командой.

Общайтесь с самыми разными людьми внутри: разработка, продукт, маркетинг, продажи. Они могут поделиться с вами крутыми инсайтами о бизнесе и рынке.

4. Расширяйте сферы компетенции, не только по части аналитики.

5. Не засиживайтесь на одном месте.

Когда вы поняли, что ваши обязанности начинают повторяться, вы не можете уже взять от этого места столько же, сколько брали до этого, то задумайтесь, возможно, нужно открыться предложениям, которые поступают к вам, чтобы вы могли дальше расти как аналитик.

Полезные ссылки от Юрия Тростина:

  • Victor Cheng

Виктор Ченг — это икона в сфере консалтинга… У него есть классные книги и лекции на ютуб, а также аудиозаписи кейс-интервью. Вы можете их найти и послушать.

  • Case in Point, Marc Cosentino

Очень распространённая книжка в сфере консалтинга, которая представляет собой сборник бизнес-кейсов. Попробуйте прочитать и самостоятельно порешать кейсы из этой книжки.

  • Creating data-driven organization, Carl Anderson

Книга рассчитана на большой пласт специалистов, от джунов до профи. Книга хорошо развивает мысль, зачем вообще нужна аналитика. Создает даже некий фреймворк о том, как можно думать про аналитику в компании.

  • Youtube: CrashCourse / Computer Science

Любимый канал Юрия на ютуб. Там есть много быстрых курсов, в том числе и про Computer Science. С помощью этого курса вы сможете изучить основы Computer Science и понять откуда она зародилась.

  • Introduction to Networking, Charles Severance

Хорошая книга о том, как работают сети Интернет. Достаточно простая, рекомендую к прочтению.

  • Product Analytics Playbook, Amplitude

Этот источник позволяет по-новому взглянуть на аналитику, на важность отдельных метрик. В этом гайде есть туториалы, как можно все эти знания использовать в Amplitude.

  • Как мы делаем data-driven стартап. Worki

Выступление Юрия Тростина в Минске, где он рассказывает, как они делают data-driven стартап Worki.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...