Better Explained: Как понять ноль в нулевой степени? / Newtonew: новости сетевого образования

Правило Лопиталя и раскрытие неопределённостей вида 0/0, ∞/∞ и других через равенство предела отношений функций и предела отношений их производных

Правило Лопиталя и раскрытие неопределённостей

Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция. Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций. Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):

формула, отображающая правило лопиталя.

Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к более точным формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a. А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g(x) не равна нулю (g'(x)≠0) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

формула, отображающая правило лопиталя.

Правило Лопиталя для случая предела двух бесконечно больших величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a. А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g(x) не равна нулю (g'(x)≠0) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

формула, отображающая правило лопиталя.

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Ноль «в степени» ноль

Как такое может быть? А вот как: 10=1, 20=1…. х0=1. Любое число при взведении в нулевую степени равняется единице. Чем сам ноль хуже? Но не все так просто.
0 в степени 0 = 1
Что означает возвести в степень? Например «два в квадрате». Что мы делаем, мы двойку умножаем на саму себя 2 раза  (2*2=4), «два в кубе», двойку умножаем саму на себя 3 раза (2*2*2=8).  А что если степень, это «ноль»? Нужно взять число и умножить само на себя…. ноль раз? Это странно.

Вот как выглядит график функции y=xx

Видно, что при уменьшении значения Х значение У сначала снижается, а потом начинает расти и превращается… в единицу при условии очень маленьких (почти нулевых) значениях Х. Было бы логично предположить, что когда значение уменьшится до ноля, там тоже будет единица.

график 0 в степени 0

Еще раз, вернемся к простым цифрам:

32=9

Что означает эта запись? Чтобы получить девять, нужно тройку умножить два раза. Правда же?

30=1

Сколько раз нужно умножить тройку саму на себя, чтобы получить единицу? А если разделить 1 на 3? Простого ответа нет? Логично, что чем больше значение степени, тем больше результат, и чем меньше это значение, тем и результат меньше.

Но на графике выше показано, что кривая «упирается» в предел, в единицу. Точнее, значение функции становится равным 1, когда ноль еще даже не достигнут. И если уменьшать Х еще больше, все равно, дальше единицы не сдвинутся.

Виды неопредлённостей

  • $frac{0}{0}$ — деление нуля на нуль;

  • $frac{infty}{infty}$ — деление бесконечности на бесконечность;

  • $0 cdot infty$ — умножение нуля на бесконечность;

  • $1^{infty}$ — единица, возведённая в степень бесконечности;

  • $(infty-infty$) — разность бесконечностей;

  • $0^0$ — нуль в нулевой степени;

  • $infty^0$ — бесконечность в степени 0.

Неопределённости вида $frac{0}{0}$ и $frac{infty}{infty}$ называются основными и для их раскрытия применяется правило Лопиталя, тогда как остальные неопределённости сводятся путём тождественных преобразований также к основным или решаются иными способами.

Познакомьтесь с Экпандотроном™

Это Экспандотрон 3000. Он выглядит как достаточно потрёпанная микроволновка, но вместо подогрева пищи она занимается ростом чисел. Просто положите число внутрь и проделайте несколько простых операций.

  • Начните с 1
  • Установите желаемый показатель «Роста» за одну секунду (2х, 3х, 10,3х и т.д.)
  • Установите желаемый показатель «Времени» в секундах
  • Нажмите кнопку START

Вуаля! После звукового сигнала достаём наше новенькое готовое число. Например, мы хотим изменить 1 на 9. Что нам нужно сделать?

  • Поместите 1 в Экспандотрон
  • Установите «Рост» на 3х, а «Время» на 2 секунды
  • Нажмите кнопку START

Что мы видим? Мы видим, как число начинает преобразовываться: 1; 1,1; 1,2… По окончании первой секунды оно уже выглядит как 3 и продолжает меняться: 3,1; 3,5; 4,0; 6,0; 7,5… И по окончании второй секунды оно превратилось в 9.

В математическом представлении Экспандотрон (или показательная функция) делает для нас следующее:

или

Например, 32 = 9/1. Основанием является то количество раз, в которое нам нужно вырастить число (х3), а степенью — количество времени (2). Формула типа 2n означает «Используйте свой Экспандотрон на мощности х2 в течение n секунд».

Работу Экспандотрона мы всегда начинаем с 1, чтобы посмотреть, как он меняет одну единицу. Если мы хотим посмотреть, что случится с 3 в Экспандотроне, мы просто масштабируем конечный результат. Например:

  • Начните с 1 и умножьте на двойку в третьей степени: 1*23 = 1 * 2 * 2 * 2 = 8

  • Начните с 3 и умножьте на двойку в третьей степени: 3*23 = 3 * 2 * 2 * 2 = 24

Каждый раз, когда вы видите простую степень, вы начинаете с 1.

Раскрытие неопределённости, содержащей бесконечность в числителе и знаменателе

Для того чтобы раскрыть такую неопределённость, сначала находят в выражении старшую степень при переменной, а затем делят на эту переменную числитель и знаменатель.

Квадратные корни

Продолжим. Предположим, мы выбрали мощность а и устанавливаем рост в течение 3 секунд:

Неплохо. Как будет выглядеть рост в течение половины этого времени? Логично, что 1,5 секунды.

А если мы проделаем то же самое два раза?

частичный рост * частичный рост = полный рост

Смотрим на это уравнение и видим, что «частичный рост» — это квадратный корень из значения полного роста. А если мы разделим время на три части?

частичный рост * частичный рост * частичный рост = полный рост

А вот и кубический корень! Это даёт нам интуитивное понимание того, почему деление степеней даёт нам корни: мы разбиваем время на равные доли.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...